• 16 июля, 2024
  • 48

Сбер и Сколтех научились прогнозировать засухи на год вперёд

Сбер и Сколтех научились прогнозировать засухи на год вперёд

Учёные из Сколтеха совместно с коллегами из Сбера предложили модели глубокого обучения для прогнозирования засух по климатическим данным. Долгосрочные прогнозы такого рода нужны сельскохозяйственным предприятиям — для планирования своей деятельности, страховщикам и банкам — для оценки соответствующих рисков и уточнения кредитных рейтингов корпоративных заёмщиков. Исследование опубликовано в престижном научном журнале первого квартиля Environmental Modelling & Software; препринт доступен в онлайн-библиотеке arXiv.

Чтобы планировать сельскохозяйственную деятельность, оценивать и страховать риски, связанные с возможностью наступления засухи, нужны точные и долгосрочные прогнозы. Проблема качественного прогнозирования засухи до сих пор не решена из-за стохастической природы (велика роль случайности) самого этого явления и сложности используемых данных.

Исследователи из Сколтеха и Сбера предложили комплексный нейросетевой подход для средне- и долгосрочного прогнозирования засух: на период от нескольких месяцев до года. Решение основано на использовании пространственно-временных нейронных сетей и доступных ежемесячных климатических данных и объединяет современные нейросетевые подходы с классическими методами.

Модели протестировали на данных по пяти регионам, расположенным на разных континентах и в разных климатических зонах, — это Польша, штат Миссури в США, бразильский штат Гояс, индийский штат Мадхья-Прадеш и северная часть Казахстана (см. карту).

«В ходе исследования было установлено, что для среднесрочного прогнозирования наилучшие результаты показала наша модификация модели EarthFormer на основе трансформера, а для долгосрочного прогнозирования — модификация модели ConvLSTM, — объясняет научный руководитель исследования, старший преподаватель Сколтеха и заведующий Лабораторией прикладных исследований «Сколтех-Сбербанк» (LARSS) в Центре прикладного ИИ Алексей Зайцев. — Наша модель показывает высокое качество для разных климатических зон. За счет использования надежных методов ИИ ее качество останется высоким следующие 10 лет».

Первый автор работы, старший инженер-исследователь Центра прикладного ИИ Сколтеха Александр Марусов, отметил:

«Прогноз засухи имеет первостепенное значение для многих регионов нашей страны. В том числе и для моего родного края — Астраханской области. Однако моделирование этого природного явления достаточно сложно ввиду необходимости учёта различных факторов, в том числе и глобального потепления. Наши модели позволяют строить качественные прогнозы засухи на год вперёд».

Результаты исследования также будут применяться Сбером в системе управления рисками.

Назар Сотириади, управляющий директор департамента интегрированного риск-менеджмента Сбера, соавтор статьи:

«В России климатические риски не так заметны, как в странах с более высокой плотностью инфраструктуры, однако они уже существенно влияют на экономику. Засухи создают риски для сельского хозяйства, объектов энергетики и населения. Мы используем результаты совместных исследований с коллегами из Сколтеха для повышения точности наших оценок в страховании и кредитовании. В ближайшие годы управление этими рисками может иметь более существенное влияние на бизнес, чем мы предполагали 3–5 лет назад. В таких задачах без модельных оценок не обойтись».

Похожие статьи

IT продукты дочерней компании ВСК получили сразу две премии…

Дочерняя IT-компания Страхового Дома ВСК – Икс-Игрек-Зет Автоматизация – получила сразу две премии в рамках международного конкурса лучших проектов корпоративной автоматизации…
Исследование Домклик: в октябре доля льготных программ снизилась на 11 п.п. до 37%

Исследование Домклик: в октябре доля льготных программ снизилась на…

Аналитический центр Домклик в своем регулярном исследовании рассказывает о ключевых изменениях на российском рынке недвижимости.

Найди своего доктора: россияне рассказали о сложностях при поиске…

Сарафанное радио — самый популярный способ поиска врачей среди россиян. Но даже рекомендации не всегда позволяют найти врача в короткий срок.